A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes
نویسندگان
چکیده
We design and analyze an approximation method for advection-diffusion-reaction equations where the (generalized) degrees of freedom are polynomials of order k 0 at mesh faces. The method hinges on local discrete reconstruction operators for the diffusive and advective derivatives and a weak enforcement of boundary conditions. Fairly general meshes with polytopal and nonmatching cells are supported. Arbitrary polynomial orders can be considered, including the case k 0, which is closely related to mimetic finite difference/mixed-hybrid finite volume methods. The error analysis covers the full range of Péclet numbers, including the delicate case of local degeneracy where diffusion vanishes on a strict subset of the domain. Computational costs remain moderate since the use of face unknowns leads to a compact stencil with reduced communications. Numerical results are presented.
منابع مشابه
hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
(2015) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. Mathematical Modelling and Numerical Analysis. ISSN 0764-583X (In Press) The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · To the extent reasonable and practicable the material made ava...
متن کاملDiscontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection
We construct and analyze a discontinuous Galerkin method to solve advectiondiffusion-reaction PDEs with anisotropic and semidefinite diffusion. The method is designed to automatically detect the so-called elliptic/hyperbolic interface on fitted meshes. The key idea is to use consistent weighted average and jump operators. Optimal estimates in the broken graph norm are proven. These are consiste...
متن کاملA Discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity
We propose and analyze a symmetric weighted interior penalty (SWIP) method to approximate in a Discontinuous Galerkin framework advection-diffusion equations with anisotropic and discontinuous diffusivity. The originality of the method consists in the use of diffusivity-dependent weighted averages to better cope with locally small diffusivity (or equivalently with locally high Péclet numbers) o...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملErratum to: On the Stability of the Flux Reconstruction Schemes on Quadrilateral Elements for the Linear Advection Equation
The flux reconstruction (FR) approach to high-order methods has proved to be a promising alternative to traditional discontinuous Galerkin (DG) schemes since they facilitate the adoption of explicit time-stepping methods suitable for parallel architectures like GPUs. The FR approach provides a parameterized family of schemes through which various classical schemes like nodal-DG and spectral dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2015